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Considerable effort in modern statistical physics is devoted to the study of networked systems. One of the
most important example of them is the brain, which creates and continuously develops complex networks of
correlated dynamics. An important quantity which captures fundamental aspects of brain network organization
is the neural complexityCsXd introduced by Tononiet al. fProc. Natl. Acad. Sci. USA91, 5033s1994dg. This
work addresses the dependence of this measure on the topological features of a network in the case of a
Gaussian stationary process. Both analytical and numerical results show that the degree of complexity has a
clear and simple meaning from a topological point of view. Moreover, the analytical result offers a straight-
forward and faster algorithm to compute the complexity of a graph than the standard one.
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I. INTRODUCTION

The study of networked systems such as the Internet, so-
cial networks, and biological networks has recently attracted
great interest within the statistical physics community. A
large variety of techniques and models have been developed
in order to understand or predict the behavior of these sys-
tems. Much effort has been applied in discovering their to-
pological featuresf1–4g and how these properties influence
the behavior of dynamical processes taking place on them.
For example, we would like to know how the topology of
social networks influences the spread of informationf5,6g
and how the search engines are affected by World Wide Web
structuref7,8g.

In this paper we focus on a basic approach for studying
the interplay between dynamics and topology of brain net-
works. This study is of interest from several points of view:
the brain and its structural features can be seen as a prototype
of a physical system capable of highly complex and adapt-
able patterns in connectivity, selectively improved through
evolution; architectural organization of the brain cortex is
one of the key features of how the brain system evolves and
adapts itself to experience and to possible injuries.

Brain activity can indeed be modeled as a dynamical pro-
cess acting on a network; each vertex of the structure repre-
sents an elementary component, such as brain areas, groups
of neurons, or individual cells. A measure, called complexity,
has been introducedf9g with the purpose to get a sensible
measure of two important features of brain activity: segrega-
tion and integration. The former is a measure of the relative
statistical independence of small subsets; the latter is the
measure of the statistical deviation from the independence of
large subsets. Complexity is based on the values of the Sh-
annon entropy calculated over the dynamics of the different-
sized subgraphs of the whole network. It is sensitive both to
the statistical properties of the dynamics and to the connec-
tivity.

It has been shownf10g, by means of genetic algorithms,
that the graphs showing high values of complexity are char-
acterized by being both segregated and integrated; the com-

plexity is low when the system is either completely indepen-
dentssegregatedd or completely dependentsintegratedd. This
general behavior is valid over a wide range of dynamical
processesf10–13g.

Despite this evidence, analytical results about the depen-
dence of complexity on the topology and dynamics is still
lacking.

In the following will be proposed a first approach to this
problem when the dynamics is Gaussian. The use of Gauss-
ian dynamics separates the statistical measure of complexity
independent from the dynamics itself. It does not pretend to
represent any realistic brain structure or activity, but to offer
a first basic step for understanding the relation existing be-
tween values of complexity and topological properties of
brain structure. For this reason we used a simplified version
of the model introduced byf11g. This is a first step which
could be furtherly developed, for example, for directed and
weighted graphs.

II. DYNAMICS, ENTROPY, AND COMPLEXITY

We consider a graph composed ofn vertices andm links.

It can be represented by its adjacency matrixÂ, whose ele-
mentsaij we set to 1 if there is a link between the verticesi
and j and 0 otherwise. Only non-self-connections are consid-
ered andaij =aji .

On the graph we model the activity as a stochastic process
in the following way: each nodei at time t can be in a
particular state defined by the quantityXistd. Given our graph
with n nodes, the states of the whole graph at timet is given
by then-dimensional vectorXstd.

The evolution ofXstd is given by the following dynamics:

Xst + 1d = Ĉ ·Xstd + Rstd,

Xs0d = Rs0d, s1d

where Ĉ=Â /n and Rstd is an n-dimensional vector whose
componentsRistd are random values.Ristd is chosen to be a
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white Gaussian noise—i.e., with the properties

R̄istd = 0,

RistdRjst8d = sdi jdst − t8d. s2d

Here the overbar represents the average over the ensemble.
The normalizationn of the adjacency matrix assures us

that the process will reach a stationary state. The dynamics,
described by Eq.s1d, is indeed a random walk which is
damped if the matrix has eingeinvaluesulu,1. In such a way
the dynamics reaches a stationary state with a characteristic
time t<1/lmin, wherelmin is the smallest eingenvalues of

the matrixĈ− Î .
It is worth noting that Eq.s1d represents a simplified ver-

sion of the dynamics introduced inf11g. In that case it was
considered a Gaussian dynamics on directed and weighted
graphs and with some limitations on the values of the vari-
ances of each unitsnoded.

Since Xstd is a multidimensional Gaussian process, its
statistics is completely described through its second-order
moment:

Xst + 1dX tst + 1d = ĈXstdX tstdĈt + Î , s3d

whereXst+1dX tst+1d is then3n covariance matrix whose
determinant will be referred in the following asucovsXdu. The
average value ofXstd is always zero, being a sum of zero
mean values at each time step.

Since the processXstd is Gaussian, it is possible to
show that the Shannon entropyHsXd depends only on
ucovsXdu f14g:

HsXd = 0.5 lnfs2pednucovsXdug. s4d

Let us consider all the possible subgraphs of rankk snum-
ber of nodesd of the whole graph. Each of these subgraphs
are indicated asXk.

The complexity has been defined as

CsXd = o
k
FkHsXkdl −

k

n
HsXdG , s5d

where the averagek¯l is taken over all subgraphs of rankk.
The sum ranges from the minimum possible rank of a
subgraph—i.e., from 2 ton−1. The term in Eq.s5d for k
=1 would be trivial since the covariance matrix of discon-
nected vertices is simply dependent only on the variance of
Rstd—i.e., ucovsX1du=sn; the term fork=n is instead always
null. In the following, we will set for the sake of simplicity
s=1.

In what follows we will try to find a relation between the
topology of the graph and its values of entropyHsXd and
complexityCsXd, having defined on it the multidimensional
Gaussian processs1d.

Under stationary conditions, the generic element of
covsXd in the eigenvectors basexi8 is

xi8xl8 =
dil

1 − sli/ndll/n
. s6d

The set of valuesli represents the eigenvalue spectrum of

the adjacency matrixÂ:

o
j

Aijxj8 = o
j

l jxj8di j . s7d

Following Eq.s6d the determinant of the covariance matrix is

ucovsXdu = p
i

1

1 − li
2/n2 . s8d

This expression shows that the dynamics depends only on

the properties of the adjacency matrixÂ through its eigen-
value spectrum. As a consequence the statistical properties of
the stationary states can be analyzed without studying their
time evolution but by looking at their eigenvalue spectrum.
On the other hand, the richness in information embedded in
the eigenvalue spectrum makes the analysis not trivial at all
f15g. The aim of the next section is to show which topologi-
cal properties embedded into the spectrum dominate the be-
havior of the dynamical process.

III. CONNECTION WITH THE TOPOLOGY

Using Eq.s8d, HsXd becomes

HsXd = 0.5 lnfs2pednucovsXdug = 0.5o
i

lnFs2ped
1

1 − li
2/n2G .

s9d

If lmax
2 /n2!1, we can consider the following series

expansion:

lnS1 −
li

2

n2D . − o
i

li
2

n2 − o
i

li
4

2n4 + OSo
i

li
6

3n6D , s10d

and by substitution in Eq.s9d, we get

HsXd . lns2pedn/2 + 0.5So
i

li
2

n2 + o
i

li
4

2n4D + OSo
i

li
6

6n6D .

s11d

Equations11d allows us to relateHsXd to the numberDk;
this is the number of k-step directed paths of the
underlying—undirected—graph, which return to their start-
ing node afterk steps:

Dk = o
i=1

n

slidk = o
i1,i2,. . .,ik

ai1,i2
ai2,i3

¯ aik,i1
, s12d

where aik,ik+1
is the generic nonzero element of the adian-

cency matrixÂ.
Using this resultHsXd becomes
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HsXd . lns2pedn/2 + 0.5SD2

n2 +
D4

2n4D + OS D6

6n6D . s13d

D2 is then the number of paths which starting from any node
i go to any other onej and then come back toi. Remember-
ing that an unconnected pair of nodes hasaij =0, D2 is obvi-
ously twice the number oflinks of the whole graph.

Thus the first two terms ofHsXd expansion depend only
on the number of nodes and links, and not on the graph
topology.

Consider now the value of complexityCsXd up to theD2

term in the entropy. We get

CsXd = o
k=2

n−1FkHsXkdl −
k

n
HsXdG

. 0.5o
k=2

n−1 S kD2skdl
k2 −

k

n

D2

n2 D
= o

k=2

n−1 S kmskdl
k2 −

m

n2

k

n
D

=
msn − 2d
nsn − 1d

−
msn + 1dsn − 2d

2n3 +
m

n3o
k=2

n−1
1

k

= Cord2sn,md, s14d

since

kmskdl = m
ksk − 1d
nsn − 1d

.

So far, the value ofCsXd is not defined by the topology.
In order to reveal something related to a particular link’s
arrangement, we need to consider the further terms in the
expansion. We can rewrite the complexityCsXd in the fol-
lowing way to put in evidence the part dependent only on the
number of links,m, and nodes,n, of the whole graphsand so
independent from the topologyd Cord2sn,md:

CsXd = Cord2sn,md +
1

4o
k=2

n−1 S kD4skdl
k4 −

k

n

D4

n4 D + Rsld,

s15d

Rsld = OFo
k=2

n−1So
i

kliskd6l
6k6 D −

k

n

D6

6n6G , s16d

where we have explicitly written the term inl4.
In order to express the topological information contained

in Eq. s15d, let us consider that

kD4skdl = Ko
i

liskd4L = k4mskd2l − o
iÞ j

kliskd2l jskd2l

s17d

and

o
iÞ j

li
2skdl j

2skd = o
iÞ j

o
lq

ailaliajqaqj − 2D2skd. s18d

From Eq.s17d we see that theCsXd, at this order of ap-
proximation, depends on the second-order moment of the
number of links,kmskd2l, calculated over all the subgraphs of
rankk swe remember that a subgraph ofrank k is a particular
choice ofk nodes in the whole graph andkP f2,n−1gd. This
is the first quantity dependent on the topology that we can
easily evaluate on the graph in place of the original expres-
sion of complexity. In the next step we will show that the
fourth-order approximated value of complexity can be ex-
pressed throughkmskd2l calculated over all the subgraphs of
rank k si.e., kP f2,n−1gd and the second-order moment of
the degree distributionkkq2ll of the whole graph. This will
allow us to distinguish the complexity of graphs with the
same total number of nodes,n, and total number of links,m,
through the evaluation of less time consuming measures than
the complexity. Moreover, this result will offer a deeper un-
derstanding of what the complexity measure means from the
topological point of view.

The terms in the sum of Eq.s18d can be explicitly ex-
pressed as

o
iÞ j

o
lq

ailaliajqaqj = o
iÞ j ;l=j ,q=i

saijajid2 + o
iÞ jÞlÞq

ailaliajqaqj

+ 3 o
iÞ jÞl

ailaliajlalj + 2 o
iÞ jÞl

ailailajjajj

+ o
iÞ j ;l=i,q=j

aiiaiiajjajj

+ 2 o
iÞ jl=q=j

aijajiajjajj . s19d

In expressions19d, only the first three terms are nonzero,
while the others contain at least a diagonal elementaii =0.
Moreover, the first term is justD2.

It is easy to show that the second and third terms in the
sum correspond to the number of pathss“loops”d of the type
shown in Fig. 1.

We will show that the number of these paths is related to
kkq2ll. In what followsq represents the degree of the generic
nodei—i.e., the nodei hasq links.

FIG. 1. Top: paths described by the third term in Eq.s19d. Bot-
tom: paths described by the second term in Eq.s19d
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Consider now a particular subgraph of rankk. It has k
nodes, each of them having a certain number of links or
none. Consider then all the nodes having the same degreeq
in a generic subgraph of rankk; then, the number of paths
sloopsd of the first type in Fig. 1, involving this kind of nodes
is

Sn − 3

k − 3
DSq

2
D ,

wheres n−3
k−3

d is the number of ways to choosek nodes over a
total of n nodes, leaving aside the three nodes which belong
to the pair considered. This is the number of subgraph of
rankk, in the whole graph, which contain a particular choice
of three nodes. Moreover, since the generic nodei has q
links, we can counts q

2
d different pairs of links sharing the

same nodei.
If we denote with Psqd the degree distribution in the

whole graph, then we can write the third term in Eq.s19d as

o
hkj

o
iÞ jÞl

ailaliajlalj =E
1

qmaxSn − 3

k − 3
DSq

2
DPsqddq

=
1

2
Sn − 3

k − 3
Dskkq2ll − kkqlld,

where we explicitely wrote theohkj which we will use later.
ohkj means a sum over all subgraphs withk nodes or of
rank k.

Consider now the second term in Eq.s19d—i.e.,
oiÞ jÞkÞqaikakiajqaqj. This is the number of disjoint pairs of
links in a generic subgraph of rankk.

To compute such a number, we first count the total num-
ber of pairs in the whole graph—i.e.,s m

2
d; then, we subtract

the number of pairs of links sharing a node in the whole
graph sfrom the previous computationd. Finally we have to
consider the multiplicitys n−4

k−4
d—i.e., the number of subgraphs

of rank k containing each pair of disjoint links.
Then the second term in Eq.s19d is sagain considering

also the sumohkjd

o
hkj

o
iÞ jÞlÞq

ailaliajqaqj = FSm

2
D −

1

2
skkq2ll − kkqlldGSn − 4

k − 4
D .

Remembering that in Eq.s15d we have to compute the
quantity ok=2

n−1kD4skdl, then we have to evaluate
ok=2

n−1oiÞ jolqkailaliajqaqjl. The averagek¯l is performed for a
particular value ofk over all the subgraph of rankk. For this
reason in previous expressions we have explicitly written the
sum over all the subgraphs of rankk—i.e., ohkj. To perform
the averagek¯l we have then simply to divide such expres-
sions by the number of subgraphs of rankk contained in the
whole graph—i.e.,s n

k
d. Eventually, we have to sum over all

the values ofk, ok.
Then the final expression forokkD4skdl becomes

o
k

kD4skdl = o
k

k4mskd2l + o
k=2

k=n−1
k2mskdl

Sn

k
D +

1

2o
k=4

n−1

skkq2ll

− kkqlld
Sn − 4

k − 4
D

Sn

k
D − Sm

2
Do

k=4

n−1 Sn − 4

k − 4
D

Sn

k
D

+
3

2o
k=3

n−1

skkqll − kkq2lld
Sn − 3

k − 3
D

Sn

k
D , s20d

where the second and third terms of Eq.s19d have been
substituted by their explicit computations.

It is worth noting thatok=2
n−1kkqll is only a function ofn

andm, beingkkqll=m/n.
In the following is the whole expression ofCsXd:

CsXd = Cord2sn,md + C1
ord4Sm,n,o

k=2

n−1

kmskd2lD
+ C2

ord4sm,n,kkq2lld + C3
ord4sm,n,kkqlld + C4

ord4sm,nd

+ Rsld, s21d

whereCord2sn,md and Rsld are, respectively, Eqs.s14d and
s16d. The other terms are

C1
ord4Sm,n,o

k=2

n−1

kmskd2lD = o
k=2

n−1
kmskd2l

k4 ,

C2
ord4sm,n,kkq2lld =

kkq2ll
8

n2 − n − 3

n4

+
kkq2ll

8
So

k=4

n−1
1

k4

sn − 4d!k!

sk − 4d!n!

− o
k=3

n−1
3

k4

sn − 3d!k!

sk − 3d!n!
D ,

FIG. 2. Three different network models: a regular network, the
small word model, and a random network. It is possible to go from
one model to the other varying the probabilityp of rewiring ssee the
text for further detailsd.
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C3
ord4sm,n,kkqlld = −

1

8

n2 − n − 3

n4 +
1

8
So

k=3

n−1
3

k4

sn − 3d!k!

sk − 3d!n!

− o
k=4

n−1
1

k4

sn − 4d!k!

sk − 4d!n!
D ,

C4
ord4sm,nd = −

msn + 1dsn − 2d
4n5 +

m

2

31 o
k=2

k=n−1
1

nsn − 1d
1

Sn

k
D

k − 1

k3

−
m− 1

4

Sn − 4

k − 4
D

Sn

k
D

1

k42 .

IV. NUMERICAL RESULTS

We perform the calculation of the entropy and complexity
of the dynamicss1d over a small world graph withn
=10,15,20 nodes. We estimate both the exact and approxi-
mate values for checking the accuracy of the approximation
and their dependence on the topological properties of the
graphs.

The algorithm behind the model can be summarized in
two stepsf16g.

s1d Start with a ring lattice withn nodes in which every
node is connected to its firstJ neighborssJ/2 on either sided.
In order to have a sparse but connected network at all times,
considern@J@ lnsnd@1.

s2d Randomly rewire each edge of the lattice with prob-
ability p such that self-connections and duplicate edges are
excluded. Varyingp the transition between ordersp=0d and
randomnesssp=1d can be closely monitoredsFig. 2d.

The numerical evaluation for the exact and the approxi-
mated values ofCsXd can be easily achieved in a small
world graph: in this case we can investigate different ar-
rangements of links, keeping the number of nodes and links
fixed. The variation of complexity is affected both bykmskd2l
over all the scalesk, andkkq2ll.

Since the expansion is allowed when the average node
degree is much less than 1slmax

2 /n2!1d, we expect a higher
accuracy when the average connectivity is lowsn@Jd and a
worse approximation whenJ increases. The simulations con-
firm this trend for increasing values ofJ andJ,n sFig. 3d.

In Fig. 4 we show the exact and approximated behavior of
CsXd versus the probability of rewiring. Their relative differ-
ence is much less than 1 and they show very similar
behavior.

Analogous results have been found for the other values
of n.

V. DISCUSSION

We attempted to extract the topological meaning of the
complexity measure in the case of Gaussian dynamics. This

aim has been achieved both from analytical and numerical
points of view, showing that very good approximation of
complexity can be obtained through two simple direct topo-
logical measures on the graph: namely, the second-order mo-
ment of the number of linkskm2skdl over all the scalesk and
the second-order moment of the node degreekkq2ll on the
whole graph. The analytical expression is obtained through
an expansion forlmax/n!1; however, the numerical results
show expressions21d for the complexity is a reasonable ap-
proximation even forlmax/n/1.

The relevance of the obtained results relies on two main
aspects: the measure has a clear topological meaning which
helps to understand in a more intutive way the degree ofcom-
plexity of a graph; it can be evaluated through two less time-
consuming and considerably easier to compute topological
measures. The saving of computation time is of ordern since
evaluating the two mesures mentioned above requiren2 steps
instead of then3 steps of the diagonalizing algorithms for
symmetric matrices.

We enjoyed useful discussions with and suggestions by
Dr. V. Servedio and Dr. A. Capocci.

FIG. 4. Behavior of the complexity measure and its approxima-
tion sup to fourth orderd in a small world graph withn=20 nodes
andJ=4, againstp, the probability of rewiring.

FIG. 3. Behavior of the complexity measure and its approxima-
tion sup to fourth orderd in a small world graph withn=10,15,20
nodes andp=0.1, againstJ—i.e., the number of first neighbors.
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