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Topological approach to neural complexity
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Considerable effort in modern statistical physics is devoted to the study of networked systems. One of the
most important example of them is the brain, which creates and continuously develops complex networks of
correlated dynamics. An important quantity which captures fundamental aspects of brain network organization
is the neural complexitZ(X) introduced by Tononét al.[Proc. Natl. Acad. Sci. USA1, 5033(1994]. This
work addresses the dependence of this measure on the topological features of a network in the case of a
Gaussian stationary process. Both analytical and numerical results show that the degree of complexity has a
clear and simple meaning from a topological point of view. Moreover, the analytical result offers a straight-
forward and faster algorithm to compute the complexity of a graph than the standard one.
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I. INTRODUCTION plexity is low when the system is either completely indepen-

The study of networked systems such as the Internet, s¢lent(segregatedor completely dependeitintegrated. This
cial networks, and biological networks has recently attracte@eneral behavior is valid over a wide range of dynamical
great interest within the statistical physics community. AProcesse$10-13.
large variety of techniques and models have been developed Despite this evidence, analytical results about the depen-
in order to understand or predict the behavior of these sysdence of complexity on the topology and dynamics is still
tems. Much effort has been applied in discovering their todacking.
pological featureg1—4] and how these properties influence  In the following will be proposed a first approach to this
the behavior of dynamical processes taking place on thenproblem when the dynamics is Gaussian. The use of Gauss-
For example, we would like to know how the topology of ian dynamics separates the statistical measure of complexity
social networks influences the spread of informatjsrs]  independent from the dynamics itself. It does not pretend to
and how the search engines are affected by World Wide Wetepresent any realistic brain structure or activity, but to offer
structure[7,8]. a first basic step for understanding the relation existing be-

In this paper we focus on a basic approach for studyingween values of complexity and topological properties of
the interplay between dynamics and topology of brain netbrain structure. For this reason we used a simplified version
works. This study is of interest from several points of view: of the model introduced by11]. This is a first step which
the brain and its structural features can be seen as a prototypeuld be furtherly developed, for example, for directed and
of a physical system capable of highly complex and adaptweighted graphs.
able patterns in connectivity, selectively improved through
evolution; architectural organization of the brain cortex is [l. DYNAMICS, ENTROPY, AND COMPLEXITY
one of the key features of how the brain system evolves and ) . .
adapts itself to experience and to possible injuries. We consider a graph composedrofertices andn links.

Brain activity can indeed be modeled as a dynamical prolt can be represented by its adjacency ma&ixwhose ele-
cess acting on a network; each vertex of the structure reprénentsa; we set to 1 if there is a link between the vertices
sents an elementary component, such as brain areas, grouggddj and 0 otherwise. Only non-self-connections are consid-
of neurons, or individual cells. A measure, called complexity,ered anda; =a;;.
has been introduce®] with the purpose to get a sensible  On the graph we model the activity as a stochastic process
measure of two important features of brain activity: segregain the following way: each node at timet can be in a
tion and integration. The former is a measure of the relativearticular state defined by the quantiyt). Given our graph
statistical independence of small subsets; the latter is theith n nodes, the states of the whole graph at tingegiven
measure of the statistical deviation from the independence dfy then-dimensional vectoX(t).
large subsets. Complexity is based on the values of the Sh- The evolution ofX(t) is given by the following dynamics:
annon entropy calculated over the dynamics of the different-

sized subgraphs of the whole network. It is sensitive both to X(t+1)=C-X() +R(),
the statistical properties of the dynamics and to the connec-
tivity. X(0) =R(0), 1)

It has been showhl0], by means of genetic algorithms, R
that the graphs showing high values of complexity are charwhere C=A/n and R(t) is an n-dimensional vector whose
acterized by being both segregated and integrated; the comemponent®Ri(t) are random value(t) is chosen to be a
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white Gaussian noise—i.e., with the properties — S ©)
XX = —————.
o T 1~ (nn)n/n
R®=0,

The set of values\; represents the eigenvalue spectrum of

_ the adjacency matriA:
ROR(T) = 06,8t —t'). ) jacency

Here the overbar represents the average over the ensemble. ;A” X = 21“ A% 0 @)
The normalizatiom of the adjacency matrix assures us

that the process will reach a stationary state. The dynamicsollowing Eq.(6) the determinant of the covariance matrix is

described by Eq(1), is indeed a random walk which is

damped if the matrix has eingeinvalya$< 1. In such a way _ 1

the dynamics reaches a stationary state with a characteristic lcovX)| = H 1-N\¥n? (8)

time 7= 1/\yn Wherekq, is the smallest eingenvalues of ' '

the matrixC—1. This expression shows that the dynamics depends only on

It is worth noting that Eq(1) represents a simplified ver- the properties of the adjacency matAxthrough its eigen-
sion of the dynamics introduced [d1]. In that case it was value spectrum. As a consequence the statistical properties of
considered a Gaussian dynamics on directed and weightdte stationary states can be analyzed without studying their
graphs and with some limitations on the values of the varitime evolution but by looking at their eigenvalue spectrum.
ances of each uninodse. On the other hand, the richness in information embedded in

Since X(t) is a multidimensional Gaussian process, itsthe eigenvalue spectrum makes the analysis not trivial at all
statistics is completely described through its second-orddrl5]. The aim of the next section is to show which topologi-
moment: cal properties embedded into the spectrum dominate the be-

havior of the dynamical process.

X(t+ )Xt + 1) = CX(OX(OC +1, 3)
I1l. CONNECTION WITH THE TOPOLOGY
where X (t+1)X!(t+1) is thenX n covariance matrix whose

determinant will be referred in the following &ov(X)|. The Using Eq.(8), H(X) becomes

average value oK(t) is always zero, being a sum of zero 1
mean values at each time step. H(X) = 0.5 I (27re)"|cov(X)|] = 0.5, |n[(27re)—22]_
Since the proces¥(t) is Gaussian, it is possible to i 1-A\j/n
show that the Shannon entrogy(X) depends only on (9)

|cou(X)| [14]:

If \2,/n°<1, we can consider the following series
H(X) = 0.5 I (2m7e)"|cov(X)|]. (4)  expansion:

Let us consider all the possible subgraphs of raum- ) ) 4 6
ber of nodes of the whole graph. Each of these subgraphs In(l _ﬁ) __3AN_+ A 0[S A (10)
are indicated a¥,. n? ' n? 2n* 3n° )"

The complexity has been defined as

i
and by substitution in Eq9), we get

2 4 6
H(X)zln(ZWe)”/2+o_5<Z%+2 N )+O<E L)

~ on’ ~ 6n°

k
C(X) = % {(H(xk» - HH(X)]’ (5)

where the average--) is taken over all subgraphs of rakk
The sum ranges from the minimum possible rank of a (1)
subgraph—Le.,_f_rom .2 to-1. The Ferm n Eq_.(5) for_ K Equation(11) allows us to relatéd(X) to the numbeD,;
=1 would be trivial since the covariance matrix of discon-

nected vertices is simply dependent only on the variance o 's is the number ofk-step directed paths of the
. 2 underlying—undirected—graph, which return to their start-
R(t)—i.e., |cov(X,)|=0"; the term fork=n is instead always ying grap

i de afterk steps:
null. In the following, we will set for the sake of simplicity ng node attefk steps

o=1. n
In what follows we will try to find a relation between the Dy= > (\)K= > 81,30, By (12)
topology of the graph and its values of entrodyX) and i=1 i,k
complexity C(X), having defined on it the multidimensional ] ) )
Gaussian procesd). where i, IS the generic nonzero element of the adian-
Under stationary conditions, the generic element ofcency matrixA.
cov(X) in the eigenvectors bas€ is Using this resuliH(X) becomes
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)l

D,
+ —_—
2n®

D¢

6n6>' (13)

D
H(X) = In(27e)"2 + o.5<n—22

D, is then the number of paths which starting from any node

i go to any other on¢ and then come back o Remember-
ing that an unconnected pair of nodes bgs 0, D, is obvi-
ously twice the number dfnks of the whole graph.

Thus the first two terms dfi(X) expansion depend only

on the number of nodes and links, and not on the graph

topology.
Consider now the value of complexi®(X) up to theD,
term in the entropy. We get

n-1

k
CX)=2, {<H(xk>>——H(X)}
k=2 n

(

(m(k))
k2

n-1

=0.5>

(Da(k)) _kDy
o\ kK onn?

(-

_m(n-2) _ m(n+1)(n-2)
" nin-1) 2n®

|

1

-
m k

=>

k=2

nn

n-1

>

k=2

1
Kk

m

n3

= C%%(n,m), (14)
since

k(k-1)

nin-1)°

So far, the value 0o€(X) is not defined by the topology.
In order to reveal something related to a particular link’s

(m(k)) =m

arrangement, we need to consider the further terms in th

expansion. We can rewrite the complex@®(X) in the fol-
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FIG. 1. Top: paths described by the third term in ELP). Bot-
tom: paths described by the second term in @§)

N

From Eq.(17) we see that th€(X), at this order of ap-
proximation, depends on the second-order moment of the
number of links{m(k)?), calculated over all the subgraphs of
rankk (we remember that a subgraphrahk kis a particular
choice ofk nodes in the whole graph afds [2,n—1]). This
is the first quantity dependent on the topology that we can
easily evaluate on the graph in place of the original expres-
sion of complexity. In the next step we will show that the
fourth-order approximated value of complexity can be ex-
pressed througkm(k)?) calculated over all the subgraphs of
rank k (i.e., ke[2,n-1]) and the second-order moment of
the degree distributiok(g?)) of the whole graph. This will
allow us to distinguish the complexity of graphs with the
same total number of nodes, and total number of linkan,
through the evaluation of less time consuming measures than
fhe complexity. Moreover, this result will offer a deeper un-
derstanding of what the complexity measure means from the

lowing way to put in evidence the part dependent only on th%pological point of view.

number of linksm, and nodesn, of the whole grapltand so
independent from the topolog°%(n, m):

170 ((D,K) kD
_ ~ord2 - 4 _n-4
C(X)=C (n,m)+4k§2< & nn4)+R(x),
(15
=0 E“‘l (K Kk Dg L
()= S\ 6k nénd |’ (16)

where we have explicitly written the term f.

In order to express the topological information contained

in Eq. (15), let us consider that
(Dy(k)) = <E m(k)4> = (Am(k?) - 2 (K2 (02
i i#]
(17)
and

2N RN =2 Y ayayagag —2D,(k).  (18)

i#] i#] Iq

01611

The terms in the sum of Eq18) can be explicitly ex-
pressed as

> D adiagag = X @@+ X aya3dgdy;
i+j Iq i#];1=j,g=i i#j#1#q
+3 > i ay; +2 > a1 3 &
i#j#l i#j#1
+ > aii & a;; &
i#];1=i,0=]
i+jl=g=]

In expression(19), only the first three terms are nonzero,
while the others contain at least a diagonal elenggnt0.
Moreover, the first term is judD,.

It is easy to show that the second and third terms in the
sum correspond to the number of pattisops”) of the type
shown in Fig. 1.

We will show that the number of these paths is related to
{g?). In what followsq represents the degree of the generic
nodei—i.e., the node hasq links.
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Consider now a particular subgraph of rakklt hask
nodes, each of them having a certain number of links or .
none. Consider then all the nodes having the same degree
in a generic subgraph of rark then, the number of paths

(loops of the first type in Fig. 1, involving this kind of nodes Regular Small World Random
is
FIG. 2. Three different network models: a regular network, the
small word model, and a random network. It is possible to go from
(n - 3) <q> one model to the other varying the probabilityf rewiring (see the

k-3/\2 text for further details
Where(ﬂﬁg) is the number of ways to choogenodes over a ot (2m(k)) 1n_1
total of n nodes, leaving aside the three nodes which belong 2 (Da(k) = X (4m(k)?) + 2_: n + 52_: (@)
to the pair considered. This is the number of subgraph of X k=2 (k) k=4

rankk, in the whole graph, which contain a particular choice

of three nodes. Moreover, since the generic nod®s q n-4 n-4
links, we can coun(g) different pairs of links sharing the k=4 m\"*\k-2
same node. —{Q))——— - ( )
If we denote withP(q) the degree distribution in the (n) 2 /ica (n)
whole graph, then we can write the third term in EtP) as k k
n-3
Omax n—13 q 3n—1 k-3
2 2 aaaya; = f (k_3)<2)P<q>dq +2 3 (o) = (@) , (20)
9 1%+l 1 2% (n)
k

1(n-3
- §<k . )(<<q2>> - @),

where the second and third terms of EG9) have been
substituted by their explicit computations.

It is worth noting thatZE;%((q)) is only a function ofn
andm, being{({(q))=m/n.

In the following is the whole expression @i(X):

where we explicitely wrote th&, which we will use later.
24 means a sum over all subgraphs wkhnodes or of
rank k.

Consider now the second term in Edl19—i.e.,
2 4j#k+q@ikiQqdgj- This is the number of disjoint pairs of
links in a generic subgraph of rarkk n-1

To compute such a number, we first count the total num- c(x) = cor®2(n, m) + C‘f’d“(m,n,z <m(k)2>>
ber of pairs in the whole graph—i.é.g‘); then, we subtract k=2
the number of pairs of links sharing a node in the whole ord4 ord4 ord4
graph (from the F;)revious computati@%Finally we have to +C3(m,n,((@?))) + C3(m,n,((@))) + C3*(m,n)
consider the multiplicit)fﬂj)—i.e., the number of subgraphs +R(N), (21
of rank k containing each pair of disjoint links.

Then the second term in EqL9) is (again considering

also the sunky,) where C°®(n, m) andR(\) are, respectively, Eqg14) and

(16). The other terms are

S Y aaagag s [(m) - E<<<qZ>>—<<q>>>}(”'4) 1 1 )
i%g%aj .
(K ij#1#q 2/ 2 k-4 C‘{rd4<m,n,2 <m(k)2>) => (mk4 ,
Remembering that in Eq15) we have to compute the k=2 k=2
quantity [ XD4K)), then we have to evaluate
EE;%E#I-Em(a"aﬁajqaqj). The averagé - ) is performed for a 223
particular value ok over all the subgraph of rark For this Cgfd4(m,n,<<q2>>) = M%

reason in previous expressions we have explicitly written the 8 n
sum over all the subgraphs of rakk-i.e., Zyq. To perform () 1, (n- 4K
the averagé- - -) we have then simply to divide such expres- + q_(z ——

sions by the number of subgraphs of rankontained in the 8 \ica K'(k—4)n!

whole graph—i.e.(}}). Eventually, we have to sum over all 13 -3k

the values ok, Z,. - _L)
Then the final expression fa,(D,(k)) becomes s K (k= 3)!n!
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1-n-3 1[w% 3(n-3)k
Cord4 m,n, —_= + = —r = o0 CX) n=20
3 (Mn.{a)) 8 n? 8 k% K (k- 3)!n! 3b e-eCapx(X) .
-8 C(X) n=15
n-1 = C_apx(X)
_ EM) [ oeCX)  n=10
o K (k= 4)!n! 2l o+ Capx(X) |
O
min+1)(n-2) m
Cord4 m,n - _ — 4 —
4 (mn) 4n® 2
1_ -
k=n-
il 1 1 k_ 1 | | | | | |
= nin-1)(n\ k3 4 6 8§ 10 12 14 16 18
k J
FIG. 3. Behavior of the complexity measure and its approxima-
n-4 tion (up to fourth orderin a small world graph witm=10,15,20
m-1\k-4/ 1 nodes ang=0.1, against—i.e., the number of first neighbors.
4 (n) k*
k aim has been achieved both from analytical and numerical
IV. NUMERICAL RESULTS points of view, showing that very good approximation of

complexity can be obtained through two simple direct topo-
We perform the calculation of the entropy and complexitylogical measures on the graph: namely, the second-order mo-
of the dynamics(1) over a small world graph witm  ment of the number of linkér?(k)) over all the scalek and
=10,15,20 nodes. We estimate both the exact and approxjhe second-order moment of the node degkeg)) on the
mate values for checking the accuracy of the approximatiolyhole graph. The analytical expression is obtained through
and their dependence on the topological properties of thg, expansion fok,,/n<1; however, the numerical results

graphs. . ) ) . show expressiofi21) for the complexity is a reasonable ap-
The algorithm behind the model can be summarized inyoximation even fORpad NS 1.
two stepg16]. The relevance of the obtained results relies on two main

(1) Start with a ring lattice witn nodes in which every aqpects: the measure has a clear topological meaning which
node is connected to its firdtneighborsJ/2 on either side  pe|ns to understand in a more intutive way the degree ofcom-
In order to have a sparse but connected network at all timeglexity of a graph; it can be evaluated through two less time-
considemn>J>In(n)> 1. consuming and considerably easier to compute topological

(2) Randomly rewire each edge of the lattice with prob-measures. The saving of computation time is of ordsince
ability p such t_hat self-connga_ctions and duplicate edges argyaluating the two mesures mentioned above reqdisteps
excluded. Varying the transition between ordép=0) and  jnstead of then® steps of the diagonalizing algorithms for
randomnesgp=1) can be closely monitore(Fig. 2). symmetric matrices.

The numerical evaluation for the exact and the approxi-
mated values ofC(X) can be easily achieved in a small We enjoyed useful discussions with and suggestions by
world graph: in this case we can investigate different arDr. V. Servedio and Dr. A. Capocci.
rangements of links, keeping the number of nodes and links
fixed. The variation of complexity is affected both fy(k)?) 0724
over all the scalek, and{((g?)).

Since the expansion is allowed when the average node
degree is much less than(42_/n?<1), we expect a higher 0.722
accuracy when the average connectivity is lgvi>J) and a
worse approximation whehincreases. The simulations con-

o—o C(X)
o—e C_apx(X)

firm this trend for increasing values dfandJ<n (Fig. 3. Qo.n
In Fig. 4 we show the exact and approximated behavior of T
C(X) versus the probability of rewiring. Their relative differ- 0718
ence is much less than 1 and they show very similar
behavior. 0716

Analogous results have been found for the other values
of n. 0 01 02 03 04 05 06 07 08 09 1
p
FIG. 4. Behavior of the complexity measure and its approxima-
We attempted to extract the topological meaning of thetion (up to fourth orderin a small world graph witm=20 nodes
complexity measure in the case of Gaussian dynamics. ThisndJ=4, againstp, the probability of rewiring.

V. DISCUSSION
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